Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Ecol Appl ; : e2974, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646794

ABSTRACT

A wide range of approaches has been used to manage the spread of invasive species, yet invaders continue to be a challenge to control. In some cases, management actions have no effect or may even inadvertently benefit the targeted invader. Here, we use the mid-20th century management of the Red Imported Fire Ant, Solenopsis invicta, in the US as a motivating case study to explore the conditions under which such wasted management effort may occur. Introduced in approximately 1940, the fire ant spread widely through the southeast US and became a problematic pest. Historically, fire ants were managed with broad-spectrum pesticides; unfortunately, these efforts were largely unsuccessful. One hypothesis suggests that, by also killing native ants, mass pesticide application reduced competitive burdens thereby enabling fire ants to invade more quickly than they would in the absence of management. We use a mechanistic competition model to demonstrate the landscape-level effects of such management. We explicitly model the extent and location of pesticide applications, showing that the same pesticide application can have a positive, neutral, or negative effect on the progress of an invasion, depending on where it is applied on the landscape with respect to the invasion front. When designing management, the target species is often considered alone; however, this work suggests that leveraging existing biotic interactions, specifically competition with native species, can increase the efficacy of management. Our model not only highlights the potential unintended consequences of ignoring biotic interactions, but also provides a framework for developing spatially explicit management strategies that take advantage of these biotic interactions to work smarter, not harder.

2.
Proc Biol Sci ; 290(2011): 20231356, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018110

ABSTRACT

Stress experienced during ontogeny can have profound effects on the adult phenotype. However, stress can also be experienced intergenerationally, where an offspring's phenotype can be moulded by stress experienced by the parents. Although early-life and intergenerational stress can alter anatomy, physiology, and behaviour, nothing is known about how these stress contexts interact to affect the neural phenotype. Here, we examined how early-life and intergenerational stress affect the brain in eastern fence lizards (Sceloporus undulatus). Some lizard populations co-occur with predatory fire ants, and stress from fire ant attacks exerts intergenerational physiological and behavioural changes in lizards. However, it is unclear if intergenerational stress, or the interaction between intergenerational and early-life stress, modulates the brain. To test this, we captured gravid females from fire ant invaded and uninvaded populations, and subjected offspring to three early-life stress treatments: (1) fire ant attack, (2) corticosterone, or (3) a control. Corticosterone and fire ant attack decreased some aspects of the neural phenotype while population of origin and the interaction of early-life stress and population had no effects on the brain. These results suggest that early-life stressors may better predict adult brain variation than intergenerational stress in this species.


Subject(s)
Ants , Lizards , Female , Animals , Corticosterone/pharmacology , Predatory Behavior , Lizards/physiology , Ants/physiology , Brain
3.
Front Endocrinol (Lausanne) ; 13: 801834, 2022.
Article in English | MEDLINE | ID: mdl-35311233

ABSTRACT

Colorful traits (i.e., ornaments) that signal quality have well-established relationships with individual condition and physiology. Furthermore, ornaments expressed in females may have indirect fitness effects in offspring via the prenatal physiology associated with, and social consequences of, these signaling traits. Here we examine the influence of prenatal maternal physiology and phenotype on condition-dependent signals of their offspring in adulthood. Specifically, we explore how prenatal maternal testosterone, corticosterone, and ornament color and size correlate with female and male offspring survival to adulthood and ornament quality in the lizard Sceloporus undulatus. Offspring of females with more saturated badges and high prenatal corticosterone were less likely to survive to maturity. Badge saturation and area were negatively correlated between mothers and their male offspring, and uncorrelated to those in female offspring. Maternal prenatal corticosterone was correlated negatively with badge saturation of male offspring in adulthood. Our results indicate that maternal ornamentation and prenatal concentrations of a stress-relevant hormone can lead to compounding fitness costs by reducing offspring survival to maturity and impairing expression of a signal of quality in surviving males. This mechanism may occur in concert with social costs of ornamentation in mothers. Intergenerational effects of female ornamentation and prenatal stress may be interdependent drivers of balancing selection and intralocus sexual conflict over signaling traits.


Subject(s)
Corticosterone , Lizards , Adult , Animals , Female , Humans , Lizards/physiology , Male , Mothers , Phenotype , Testosterone
4.
Mol Ecol ; 31(1): 185-196, 2022 01.
Article in English | MEDLINE | ID: mdl-34661319

ABSTRACT

The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.


Subject(s)
Gastrointestinal Microbiome , Lizards , Microbiota , Animals , Bacteria/genetics , Female , Glucocorticoids , Pregnancy
5.
Behav Ecol ; 32(6): 1330-1338, 2021.
Article in English | MEDLINE | ID: mdl-34949960

ABSTRACT

Elevated maternal glucocorticoid levels during gestation can lead to phenotypic changes in offspring via maternal effects. Although such effects have traditionally been considered maladaptive, maternally derived glucocorticoids may adaptively prepare offspring for their future environment depending upon the correlation between maternal and offspring environments. Nevertheless, relatively few studies test the effects of prenatal glucocorticoid exposure across multiple environments. We tested the potential for ecologically relevant increases in maternal glucocorticoids in the eastern fence lizard (Sceloporus undulatus) to induce adaptive phenotypic changes in offspring exposed to high or low densities of an invasive fire ant predator. Maternal treatment had limited effects on offspring morphology and behavior at hatching, but by 10 days of age, we found maternal treatment interacted with offspring environment to alter anti-predator behaviors. We did not detect differences in early-life survival based on maternal treatment or offspring environment. Opposing selection on anti-predator behaviors from historic and novel invasive predators may confound the potential of maternal glucocorticoids to adaptively influence offspring behavior. Our test of the phenotypic outcomes of transgenerational glucocorticoid effects across risk environments provides important insight into the context-specific nature of this phenomenon and the importance of understanding both current and historic evolutionary pressures.

6.
Gigascience ; 10(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34599334

ABSTRACT

BACKGROUND: High-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. FINDINGS: We present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome association mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. CONCLUSIONS: These new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.


Subject(s)
Lizards , Animals , Chromosomes/genetics , Genome , Genomics , Lizards/genetics , Synteny
7.
Ecol Evol ; 11(12): 7647-7659, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188841

ABSTRACT

Sex differences in animal coloration often result from sex-dependent regulatory mechanisms. Still, some species exhibit incomplete sexual dimorphism as females carry a rudimentary version of a costly male trait, leading to intralocus sexual conflict. The underlying physiology and condition dependence of these traits can inform why such conflicts remain unresolved. In eastern fence lizards (Sceloporus undulatus), blue iridophore badges are found in males and females, but melanin pigmentation underneath and surrounding badges is male-exclusive. We track color saturation and area of badges across sexual maturity, and their relationship to individual quality (body condition and immunocompetence) and relevant hormones (testosterone and corticosterone). Saturation and testosterone were positively correlated in both sexes, but hormone and trait had little overlap between males and females. Saturation was correlated with body condition and immunocompetence in males but not in females. Co-regulation by androgens may have released females from resource allocation costs of color saturation, even when in high condition. Badge area was independent of testosterone, but associated with low corticosterone in females, indicating that a nonsex hormone underlies incomplete sexual dimorphism. Given the evidence in this species for female reproductive costs associated with ornamentation, this sex-nonspecific regulation of an honest signal may underlie intralocus sexual conflict.

8.
Article in English | MEDLINE | ID: mdl-33933630

ABSTRACT

The effects of maternal glucocorticoids (e.g. corticosterone, CORT) on offspring interest biologists due to increasing environmental perturbations. While little is known about the impact of maternal CORT on offspring fitness, it may modulate telomere length and compromise offspring health. Here, we use a modified real-time quantitative PCR assay to assess telomere length using small DNA quantities (<60 ng). We tested the hypothesis that increased maternal CORT during gestation decreases offspring telomere length. While CORT-driven telomere shortening is well established within individuals, cross-generational effects remain unclear. We treated wild-caught gravid female eastern fence lizards (Sceloporus undulatus) with daily transdermal applications of CORT, at ecologically relevant levels, from capture to laying. Maternal CORT treatment did not alter maternal telomere length, although baseline maternal CORT concentrations had a weak, negative correlation with maternal telomere length. There was no relation between mother and offspring telomere length. There was a trend for maternal CORT treatment to shorten telomeres of sons but not daughters. Our treatment replicated exposure to a single stressor per day, likely underestimating effects seen in the wild where stressors may be more frequent. Future research should further explore fitness consequences of maternal CORT effects.


Subject(s)
Glucocorticoids/metabolism , Lizards/physiology , Pregnancy, Animal , Adrenal Cortex Hormones/pharmacology , Animals , Cellular Senescence , Corticosterone/metabolism , DNA/analysis , DNA/metabolism , Female , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects , Real-Time Polymerase Chain Reaction , Stress, Physiological , Telomere/ultrastructure
9.
Sci Rep ; 10(1): 16315, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004871

ABSTRACT

The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus). First, we acclimated lizards to one of 4 treatments: 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.


Subject(s)
Corticosterone/blood , Lizards/blood , Animals , Body Temperature , Female , Lizards/physiology , Male , Stress, Physiological , Temperature
10.
J Exp Zool A Ecol Integr Physiol ; 333(10): 792-804, 2020 12.
Article in English | MEDLINE | ID: mdl-33038069

ABSTRACT

Exposure to stressors over prolonged periods can have fitness-relevant consequences, including suppression of immune function. We tested for effects of presence of an invasive species threat on a broad panel of immune functions of a coexisting lizard. Eastern fence lizards (Sceloporus undulatus) have been exposed to invasive fire ants (Solenopsis invicta) for over 80 years. Fire ants sting and envenomate lizards, causing physiological stress, but we do not have a comprehensive understanding of the broad immune consequences of lizard exposure to fire ant presence. We conducted a suite of immune measures on fence lizards caught from areas with long histories of fire ant invasion and lizards from areas not yet invaded by fire ants. The effect of fire ant presence on immunity varied depending on the immune component measured: within fire ant invaded areas, some portions of immunity were suppressed (lymphocytic cell-mediated immunity, complement), some were unaffected (phagocytic respiratory burst, natural antibodies), and some were enhanced (anti-fire ant immunoglobulin M, basophils) compared to within uninvaded areas. Rather than fire ants being broadly immunosuppressing, as generally assumed, the immune response appears to be tailored to this specific stressor: the immune measures that were enhanced are important to the lizards' ability to handle envenomation, whereas those that were unaffected or suppressed are less critical to surviving fire ant encounters. Several immune measures were suppressed in reproductive females when actively producing follicles, which may make them more susceptible to immunosuppressive costs of stressors such as interactions with fire ants.


Subject(s)
Ants , Environment , Introduced Species , Lizards/immunology , Animals , Antibodies/immunology , Complement System Proteins/immunology , Ecology , Female , Lizards/physiology , Male , Phagocytes/metabolism , Respiratory Burst , Stress, Physiological/immunology
11.
PLoS One ; 15(5): e0233221, 2020.
Article in English | MEDLINE | ID: mdl-32433700

ABSTRACT

Conspicuous coloration is an important subject in social communication and animal behavior, and it can provide valuable insight into the role of visual signals in social selection. However, animal coloration can be plastic and affected by abiotic factors such as temperature, making its quantification problematic. In such cases, careful consideration is required so that metric choices are consistent across environments and least sensitive to abiotic factors. A detailed assessment of plastic trait in response to environmental conditions could help identify more robust methods for quantifying color. Temperature affects sexual ornamentation of eastern fence lizards, Sceloporus undulatus, with ventral coloration shifting from green to blue hues as temperatures rise, making the calculation of saturation (color purity) difficult under conditions where temperatures vary. We aimed to characterize how abiotic factors influence phenotypic expression and to identify a metric for quantifying animal color that is either independent from temperature (ideally) or best conserves individual's ranks. We compared the rates of change in saturation across two temperature treatments using seven metrics: three that are based on fixed spectral ranges (with two of them designed by us specifically for this system) and three that track the expressed hue (with one of them designed by us to circumvent spurious results in unornamented individuals). We also applied a lizard visual sensitivity model to understand how temperature-induced color changes may be perceived by conspecifics. We show that the rate of change in saturation between two temperatures is inconsistent across individuals, increasing at a higher rate in individuals with higher baseline saturation at lower temperatures. In addition, the relative color rank of individuals in a population varies with the temperature standardized by the investigator, but more so for some metrics than others. While we were unable to completely eliminate the effect of temperature, current tools for quantifying color allowed us to use spectral data to estimate saturation in a variety of ways and to largely preserve saturation ranks of individuals across temperatures while avoiding erroneous color scores. We describe our approaches and suggest best-practices for quantifying and interpreting color, particularly in cases where color changes in response to environmental factors.


Subject(s)
Lizards/physiology , Animals , Color , Environment , Female , Genitalia/anatomy & histology , Genitalia/physiology , Lizards/anatomy & histology , Male , Sex Characteristics , Skin Pigmentation/physiology , Temperature
12.
Gen Comp Endocrinol ; 286: 113299, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31606464

ABSTRACT

State-dependent foraging theory posits that animals should make foraging decisions based on energetic condition, where animals with fewer energetic reserves prioritize foraging over other behaviors, including antipredator behaviors. However, few studies have investigated these trade-offs at an individual level in wild, free-ranging animals. We investigated the relationships between internal condition and behavior in a wild mammal, the vicuña (Vicugna vicugna), which makes state-dependent decisions about the use of two habitats with different characteristics that contribute to their internal condition. Using non-invasively collected fecal samples, we measured glucocorticoid metabolites (GCMs) and thyroid hormones (THs) as indicators of combined stress (predation and nutritional), and just nutritional stress, respectively. We video recorded 20-minute behavioral observations and focused on behaviors which often demand a trade-off between energy acquisition and antipredator behaviors-vigilance and foraging. We found differences in expression of these behaviors between the two sites but found no relationships between physiological parameters (GCMs and THs) and behavior (vigilance and foraging) at either site. We suggest that state-dependent foraging may be difficult to observe in large mammals under baseline conditions and that GCMs and THs may be insensitive to small changes in stress stimuli at this scale, and where these wild animals have the entire suite of behavioral responses available to them.


Subject(s)
Glucocorticoids/metabolism , Predatory Behavior/drug effects , Triiodothyronine/metabolism , Animals , Camelids, New World
13.
Gen Comp Endocrinol ; 287: 113324, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31733208

ABSTRACT

There is growing interest in the use of glucocorticoid (GC) hormones to understand how wild animals respond to environmental challenges. Blood is the best medium for obtaining information about recent GC levels; however, obtaining blood requires restraint and can therefore be stressful and affect GC levels. There is a delay in GCs entering blood, and it is assumed that blood obtained within 3 min of first disturbing an animal reflects a baseline level of GCs, based largely on studies of birds and mammals. Here we present data on the timing of changes in the principle reptile GC, corticosterone (CORT), in four reptile species for which blood was taken within a range of times 11 min or less after first disturbance. Changes in CORT were observed in cottonmouths (Agkistrodon piscivorus; 4 min after first disturbance), rattlesnakes (Crotalus oreganus; 2 min 30 s), and rock iguanas (Cyclura cychlura; 2 min 44 s), but fence lizards (Sceloporus undulatus) did not exhibit a change within their 10-min sampling period. In both snake species, samples taken up to 3-7 min after CORT began to increase still had lower CORT concentrations than after exposure to a standard restraint stressor. The "3-min rule" appears broadly applicable as a guide for avoiding increases in plasma CORT due to handling and sampling in reptiles, but the time period in which to obtain true baseline CORT may need to be shorter in some species (rattlesnakes, rock iguanas), and may be unnecessarily limiting for others (cottonmouths, fence lizards).


Subject(s)
Blood Specimen Collection/veterinary , Corticosterone/blood , Reptiles/blood , Restraint, Physical/physiology , Agkistrodon/blood , Animals , Blood Specimen Collection/methods , Blood Specimen Collection/psychology , Blood Specimen Collection/standards , Corticosterone/analysis , Crotalus/blood , Diagnostic Techniques, Endocrine/standards , Diagnostic Techniques, Endocrine/veterinary , Handling, Psychological , Iguanas/blood , Lizards/blood , Restraint, Physical/psychology , Stress, Psychological/blood , Stress, Psychological/etiology , Time Factors
14.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Article in English | MEDLINE | ID: mdl-31210275

ABSTRACT

Mammalian pregnancy can alter the diversity, membership and structure of the maternal gut microbiota, but it is unclear whether this phenomenon occurs in vertebrates with different reproductive strategies. We conducted 16S rRNA bacterial inventories to investigate whether oviparous lizards exhibit shifts in gut microbiota similar to those observed in mammals. Using wild-caught eastern fence lizards from Alabama, USA, we collected and extracted fecal DNA from gravid and non-gravid individuals over 54 days in captivity. We predicted that, like mammals, the alpha diversity of lizard gut microbiota would decrease over gestation, and that inter-individual variation in community composition would increase. Indeed, we found that individuals in late-gestation harbored lower gut bacterial richness compared to non-gravid females. Lizard gut microbial communities of late-gestational females exhibited higher pairwise distances for both community membership and community structure compared to earlier gestation stages, indicating a higher degree of inter-individual variation as gestation progressed. Additionally, we found that the relative abundance and prevalence of the candidate phylum Melainabacteria tended to decrease over the course of gestation. While the consequences of these specific alterations are unknown, our results suggest that a general restructuring of gut microbial communities over gestation may be widespread across vertebrate reproductive strategies.


Subject(s)
Gastrointestinal Microbiome , Lizards/microbiology , Lizards/physiology , Oviparity , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Reproduction
15.
Integr Comp Biol ; 59(2): 292-305, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31127305

ABSTRACT

It is frequently hypothesized that animals employ a generalized "stress response," largely mediated by glucocorticoid (GC) hormones, such as corticosterone, to combat challenging environmental conditions. Under this hypothesis, diverse stressors are predicted to have concordant effects across biological levels of an organism. We tested the generalized stress response hypothesis in two complementary experiments with juvenile and adult male Eastern fence lizards (Sceloporus undulatus). In both experiments, animals were exposed to diverse, ecologically-relevant, acute stressors (high temperature or red imported fire ants, Solenopsis invicta) and we examined their responses at three biological levels: behavioral; physiological (endocrine [plasma corticosterone and blood glucose concentrations] and innate immunity [complement and natural antibodies]); and cellular responses (gene expression of a panel of five heat-shock proteins in blood and liver) at 30 or 90 min post stress initiation. In both experiments, we observed large differences in the cellular response to the two stressors, which contrasts the similar behavioral and endocrine responses. In the adult experiment for which we had innate immune data, the stressors affected immune function independently, and they were correlated with CORT in opposing directions. Taken together, these results challenge the concept of a generalized stress response. Rather, the stress response was context specific, especially at the cellular level. Such context-specificity might explain why attempts to link GC hormones with life history and fitness have proved difficult. Our results emphasize the need for indicators at multiple biological levels and whole-organism examinations of stress.


Subject(s)
Ants , Behavior, Animal/physiology , Gene Expression/physiology , Hot Temperature/adverse effects , Lizards/physiology , Stress, Physiological/physiology , Animals , Blood Glucose/metabolism , Corticosterone/blood , Heat-Shock Proteins/blood , Heat-Shock Proteins/metabolism , Immunity, Innate/physiology , Male , Stress, Physiological/genetics , Stress, Physiological/immunology , Time Factors
16.
Biol Lett ; 15(1): 20180718, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30958207

ABSTRACT

While it is well established that maternal stress hormones, such as corticosterone (CORT), can induce transgenerational phenotypic plasticity, few studies have addressed the influence of maternal CORT on pre-natal life stages. We tested the hypothesis that experimentally increased CORT levels of gravid female eastern fence lizards ( Sceloporus undulatus) would alter within-egg embryonic phenotype, particularly heart rates. We found that embryos from CORT-treated mothers had heart rates that increased faster with increasing temperature, resulting in higher heart rates at developmentally relevant temperatures but similar heart rates at maintenance relevant temperatures, compared with embryos of control mothers. Thus, maternal CORT appears to alter the physiology of pre-natal offspring. This may speed development and decrease the amount of time spent in eggs, the most vulnerable stage of life.


Subject(s)
Corticosterone , Lizards , Animals , Female , Heart Rate , Temperature
17.
J Exp Biol ; 222(Pt 4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30659082

ABSTRACT

Early-life stress can suppress immune function, but it is unclear whether transgenerational stress exposure modulates the immune consequences of early stress. In populations where, historically, the immune system is frequently activated, e.g. persistent stressors that cause injury, it may be maladaptive to suppress immune function after early-life stress. Thus, the relationship between early-life stress and immune function may vary with population-level historical stressor exposure. We collected gravid fence lizards (Sceloporus undulatus) from populations that naturally differ in long-term exposure to invasive fire ants (Solenopsis invicta). We manipulated early-life stress in the resulting offspring via weekly exposure to fire ants, application of the stress-relevant hormone corticosterone or control treatment from 2 to 43 weeks of age. We quantified adult immune function in these offspring with baseline and antigen-induced hemagglutination and plasma bacterial killing ability. Early-life corticosterone exposure suppressed baseline hemagglutination in offspring of lizards from populations not exposed to fire ants but enhanced hemagglutination in those from populations that were exposed to fire ants. This enhancement may prepare lizards for high rates of wounding, toxin exposure and infection associated with fire ant attack. Adult bacterial killing ability and hemagglutination were not affected by early-life exposure to fire ants, but the latter was higher in offspring of lizards from invaded sites. A population's history of persistent stress may thus alter individual long-term immunological responses to early-life stressors. Further consideration of historical stressor exposure (type and duration) may be important to better understand how early-life stressors affect adult physiology.


Subject(s)
Ants , Corticosterone/administration & dosage , Glucocorticoids/administration & dosage , Immunity, Innate , Lizards/immunology , Predatory Behavior , Animals , Female , Introduced Species , Southeastern United States , Stress, Physiological , Tennessee
18.
Glob Chang Biol ; 25(2): 620-628, 2019 02.
Article in English | MEDLINE | ID: mdl-30488524

ABSTRACT

Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non-native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness-relevant traits-morphology, physiological stress responsiveness, and antipredator behavior-in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species' full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress-relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant-invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.


Subject(s)
Ants/physiology , Food Chain , Introduced Species , Life History Traits , Lizards/physiology , Animals , Hindlimb/anatomy & histology , Lizards/anatomy & histology , Stress, Physiological , United States
19.
Proc Biol Sci ; 285(1891)2018 11 21.
Article in English | MEDLINE | ID: mdl-30464067

ABSTRACT

Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespread sensory 'pollutant'. We collected eggs of wood frogs (Rana sylvatica) from populations from different traffic noise regimes, reared hatchlings under the same conditions, and tested frogs for differences in sublethal fitness-relevant effects of noise. We show that prolonged noise impaired production of antimicrobial peptides associated with defence against disease. Additionally, noise and origin site interacted to impact immune and stress responses. Noise exposure altered leucocyte production and increased baseline levels of the stress-relevant glucocorticoid, corticosterone, in frogs from quiet sites, but noise-legacy populations were unaffected. These results suggest noise-legacy populations have adapted to avoid fitness-relevant physiological costs of traffic noise. These findings advance our understanding of the consequences of novel soundscapes and reveal a pathway by which anthropogenic disturbance can enable adaptation to novel environments.


Subject(s)
Adaptation, Physiological/physiology , Anura/physiology , Noise , Animals , Environmental Pollutants , Human Activities , Humans
20.
J Morphol ; 279(11): 1629-1639, 2018 11.
Article in English | MEDLINE | ID: mdl-30350360

ABSTRACT

Features of embryonic development in birds traditionally have been assumed to be shared by sauropsids in general. Herein, we document a pattern of yolk processing and cellularization in the Eastern fence lizard (Sceloporus undulatus) that is fundamentally different from that of birds. In the avian pattern, cells of the yolk sac lining phagocytose, and digest yolk material. These cells release products of digestion into underlying blood vessels for transport back to the embryo. In contrast, microscopic examination of the developing eggs of S. undulatus reveals that the yolk mass is converted into vascularized, "spaghetti-like" strands that fill the yolk sac cavity. Three successive developmental stages are involved. First, the liquid yolk is invaded by proliferating endodermal cells, which phagocytose and digest the yolk material. These cells form clumps that progressively fill the yolk sac cavity. Second, small blood vessels derived from the yolk sac vasculature invade the yolk sac cavity. Third, the endodermal cells become organized in monolayers around these vessels. This arrangement provides a means by which large numbers of endodermal cells can digest yolk, with each cell being positioned to release products of digestion into an adjacent blood vessel for transport to the embryo. The mechanism of yolk processing in this lizard species is similar to that of recently studied snakes. From its phylogenetic distribution, we infer that this pattern probably is ancestral for squamate sauropsids.


Subject(s)
Lizards/anatomy & histology , Lizards/embryology , Yolk Sac/embryology , Animals , Blood Vessels/anatomy & histology , Cell Aggregation , Cell Proliferation , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/ultrastructure , Neovascularization, Physiologic , Yolk Sac/cytology , Yolk Sac/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...